Performance Investigation of Empirical Mode Decomposition in Biomedical Signals

نویسندگان

  • Alexandros Karagiannis
  • Philip Constantinou
چکیده

In this paper, the performance of Empirical Mode Decomposition (EMD) applied in biomedical signals is investigated and especially it is considered the case of electrocardiogram (ECG). Synthetic ECG signals corrupted with White Gaussian Noise (WGN) as well as real ECG records are employed and a variety of time series lengths is processed with EMD in order to extract the Intrinsic Mode Functions (IMF). Computation time is measured upon the completion of the process in simulation campaign stage and real records stage and the results are compared in both cases. Spectral characteristics of the time series as well as the tendency to exhibit extrema are the key factors with significant impact on both computation time as well as the total number of IMFs

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combination of Empirical Mode Decomposition Components of HRV Signals for Discriminating Emotional States

Introduction Automatic human emotion recognition is one of the most interesting topics in the field of affective computing. However, development of a reliable approach with a reasonable recognition rate is a challenging task. The main objective of the present study was to propose a robust method for discrimination of emotional responses thorough examination of heart rate variability (HRV). In t...

متن کامل

Blind Voice Separation Based on Empirical Mode Decomposition and Grey Wolf Optimizer Algorithm

Blind voice separation refers to retrieve a set of independent sources combined by an unknown destructive system. The proposed separation procedure is based on processing of the observed sources without having any information about the combinational model or statistics of the source signals. Also, the number of combined sources is usually predefined and it is difficult to estimate based on the ...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

A Time-Frequency approach for EEG signal segmentation

The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...

متن کامل

Denoising in Biomedical signals using Ensemble Empirical Mode Decomposition

Abstract: In this paper a novel Ensemble Empirical Mode decomposition (EEMD) and adaptive filtering is proposed to filter out Gaussian noise and contact noise contained in raw biomedical signals. Real Biomedical signals from the MIT-BIH database are used to validate the performance of the proposed method. It has been observed that original signals can be significantly enhanced by using the prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010